欧洲成人午夜精品无码区久久_久久精品无码专区免费青青_av无码电影一区二区三区_各种少妇正面着bbw撒尿视频_中文精品久久久久国产网址

學(xué)術(shù)刊物 生活雜志 SCI期刊 投稿指導(dǎo) 期刊服務(wù) 文秘服務(wù) 出版社 登錄/注冊(cè) 購(gòu)物車(chē)(0)

首頁(yè) > 精品范文 > 圖像處理技術(shù)論文

圖像處理技術(shù)論文精品(七篇)

時(shí)間:2023-03-21 17:12:40

序論:寫(xiě)作是一種深度的自我表達(dá)。它要求我們深入探索自己的思想和情感,挖掘那些隱藏在內(nèi)心深處的真相,好投稿為您帶來(lái)了七篇圖像處理技術(shù)論文范文,愿它們成為您寫(xiě)作過(guò)程中的靈感催化劑,助力您的創(chuàng)作。

圖像處理技術(shù)論文

篇(1)

基于圖像采集卡的視頻圖像處理系統(tǒng)

計(jì)算機(jī)圖像處理系統(tǒng)從系統(tǒng)層次上可分為高、中、低檔三個(gè)層次,目前一般比較普及的是低檔次的系統(tǒng),該系統(tǒng)由CCD(攝像頭)、圖像采集卡、計(jì)算機(jī)三個(gè)部分組成,其結(jié)構(gòu)簡(jiǎn)單,應(yīng)用方便,效果也比較不錯(cuò),得到的圖像較清晰。目前網(wǎng)上基于VC開(kāi)發(fā)經(jīng)驗(yàn)的文章不少,可是關(guān)于如何在VC開(kāi)發(fā)平臺(tái)上使用圖像采集卡的文章確沒(méi)發(fā)現(xiàn),筆者針對(duì)在科研開(kāi)發(fā)中積累的使用圖像采集卡經(jīng)驗(yàn),介紹如何自己是如何將采集卡集成到圖像開(kāi)發(fā)系統(tǒng)中,希望能夠給目前正需要利用圖像采集卡開(kāi)發(fā)自己的圖像處理系統(tǒng)的朋友有所幫助。

使用的攝像機(jī)采用臺(tái)灣BENTECHINDUSTRIAL有限公司生產(chǎn)的CV-155L黑白攝像機(jī)。該攝像機(jī)分辨率為752x582。圖象采集卡我們采用北京中科院科技嘉公司開(kāi)發(fā)的基于PCI總線的CA-MPE1000黑白圖象采集卡。使用圖像采集卡分三步,首先安裝采集卡的驅(qū)動(dòng)程序,并將虛擬驅(qū)動(dòng)文件VxD.vxd拷貝到Windows的SYSTEM目錄下;這時(shí)候就可以進(jìn)入開(kāi)發(fā)狀態(tài)了,進(jìn)入VC開(kāi)發(fā)平臺(tái),生成新的項(xiàng)目,由于生產(chǎn)廠家為圖像采集卡提供了以mpew32.dll、mpew32.lib命名的庫(kù)文件,庫(kù)中提供了初始硬件、采集圖像等函數(shù),為使用這些函數(shù),在新項(xiàng)目上連接該動(dòng)態(tài)庫(kù);最后一步就是采集圖像并顯示處理了,這一步要設(shè)置系統(tǒng)調(diào)色板,因?yàn)椴杉ㄌ峁┑氖锹銏D形式,既純圖像數(shù)據(jù),沒(méi)有圖像的規(guī)格和調(diào)色板信息,這些需要開(kāi)發(fā)者自己規(guī)定實(shí)現(xiàn),下面是實(shí)現(xiàn)的部分代碼:

CTestView::CTestView()

{

W32_Init_MPE1000();//初始化采集卡

W32_Modify_Contrast(50);//下面的函數(shù)是為了對(duì)采集卡進(jìn)行預(yù)設(shè)置

W32_Modify_Brightness(45);//設(shè)置亮度

W32_Set_HP_Value(945);//設(shè)置水平采集點(diǎn)數(shù)

wCurrent_Frame=1;//當(dāng)前幀為1,獲取的圖像就是從這幀取得的

//設(shè)置采集信號(hào)源,僅對(duì)MPE1000有效

W32_Set_Input_Source(1);

W32_CACardParam(AD_SETHPFREQ,hpGrabFreq);

W32_Set_PAL_Range(1250,1024);//設(shè)置水平采集范圍

W32_Set_VGA_Mode(1);

wGrabWinX1=0;//采集窗口的左上角的坐標(biāo)

wGrabWinY1=0;

firstTime=TRUE;

bGrabMode=FRAME;

bZipMode=ZIPPLE;

/

lpDib=NULL;//存放獲取的圖像數(shù)據(jù)

}

CTestView::~CTestView()

{

W32_Close_MPE1000();//關(guān)閉采集卡

}

////顯示采集的圖象,雙擊鼠標(biāo)采集停止

voidCTestView::OnGraboneframe()

{

//TODO:Addyourcommandhandlercodehere

wCurrent_Frame=1;

//設(shè)置采集目標(biāo)為內(nèi)存

W32_CACardParam(AD_SETGRABDEST,CA_GRABMEM);

//啟動(dòng)采集

if(lpDib!=NULL)

{

GlobalUnlock(hglbDIB);

GlobalFree(hglbDIB);

}

//分配內(nèi)存

hglbDIB=GlobalAlloc(GHND,(DWORD)wImgWidth*(DWORD)wImgHeight);

lpDib=(BYTE*)GlobalLock(hglbDIB);

hdc=GetDC()->GetSafeHdc();

if(lpDib!=NULL)

{

cxDib=wImgWidth;

cyDib=wImgHeight;

SetLogicPal(hdc,cxDib,cyDib,8);

SetStretchBltMode(hdc,COLORONCOLOR);

bGrabMark=TRUE;

while(bGrabMark==TRUE)

{

if(msg.message==WM_LBUTTONDBLCLK)

bGrabMark=FALSE;

W32_ReadXMS2Buf(wCurrent_Frame,lpDib);

SetDIBitsToDevice(hdc,0,0,cxDib,cyDib,0,0,

0,cyDib,(LPSTR)lpDib,

bmi,

DIB_RGB_COLORS);

}

//停止采集

W32_CAStopCapture();

::ReleaseDC(GetSafeHwnd(),hdc);

return;

}

////將下面這個(gè)函數(shù)添加在視圖類(lèi)的CTestView::OnSize()函數(shù)中,就可以對(duì)系統(tǒng)的調(diào)色板進(jìn)行設(shè)置。

voidWINAPIInitLogicPal(HDChdc,shortwidth,shortheight,WORDbitCount)

{

intj,i;

shortcxDib,cyDib;

LOGPALETTE*pLogPal;

j=256

if((pLogPal=(LOGPALETTE*)malloc(sizeof(LOGPALETTE)+(j*sizeof(PALETTEENTRY))))==NULL)

return;

pLogPal->palVersion=0x300;

pLogPal->palNumEntries=j;

for(i=0;ipLogPal->palPalEntry[i].peRed=i;

pLogPal->palPalEntry[i].peGreen=i;

pLogPal->palPalEntry[i].peBlue=i;

pLogPal->palPalEntry[i].peFlags=0;

}

hPal=::CreatePalette(pLogPal);

deletepLogPal;

::SelectPalette(hdc,hPal,0);

::RealizePalette(hdc);

cxDib=width;cyDib=height;

if((bmi=(BITMAPINFO*)malloc(sizeof(BITMAPINFOHEADER)+j*sizeof(RGBQUAD)))==NULL)

return;

//bmi為全局變量,用于顯示圖像時(shí)用

bmi->bmiHeader.biSize=40;

bmi->bmiHeader.biWidth=cxDib;

bmi->bmiHeader.biHeight=cyDib;

bmi->bmiHeader.biPlanes=1;

bmi->bmiHeader.biBitCount=bitCount;

bmi->bmiHeader.biCompression=0;

bmi->bmiHeader.biSizeImage=0;

bmi->bmiHeader.biXPelsPerMeter=0;

bmi->bmiHeader.biYPelsPerMeter=0;

bmi->bmiHeader.biClrUsed=0;

bmi->bmiHeader.biClrImportant=0;

for(i=0;ibmi->bmiColors[i].rgbBlue=i;

bmi->bmiColors[i].rgbGreen=i;

bmi->bmiColors[i].rgbRed=i;

bmi->bmiColors[i].rgbReserved=0;

}

}

視頻"畫(huà)中畫(huà)"技術(shù)

"畫(huà)中畫(huà)"這個(gè)概念類(lèi)似與彩色電視機(jī)"畫(huà)中畫(huà)",就是在一幅大的圖像內(nèi)顯示另外一幅內(nèi)容不同的小的圖像,小圖像的尺寸大小一般地說(shuō)為大圖像尺寸的1/4或1/9,顯示位置在大圖像的右上角。這種技術(shù)不僅在電視技術(shù)中,在可視電話系統(tǒng)也可以發(fā)現(xiàn)這種技術(shù)的身影,它們都是依靠硬件來(lái)實(shí)現(xiàn)的,但是如何在VC開(kāi)發(fā)平臺(tái)上用編程語(yǔ)言來(lái)將該功能添加到自己開(kāi)發(fā)的視頻監(jiān)控軟件,為使用者提供更大的信息量呢?也許讀者最容易想到的是首先顯示大圖像,然后再在一個(gè)固定位置畫(huà)第二幅小圖像,這種技術(shù)技術(shù)如果對(duì)于靜止圖像當(dāng)然沒(méi)有問(wèn)題,但是對(duì)于視頻流,由于每一秒鐘需要畫(huà)25幀,即25幅圖像,這樣一來(lái)計(jì)算機(jī)需要不停的畫(huà)不停的擦除,會(huì)給用戶以閃爍的感覺(jué),如何解決這個(gè)問(wèn)題呢?有的參考書(shū)上將大小圖像分快顯示,這種方法要將待顯示的圖像數(shù)據(jù)與顯示位置的關(guān)系對(duì)應(yīng)起來(lái),容易出錯(cuò)不說(shuō),而且麻煩,且速度慢,為此,我對(duì)該方法進(jìn)行了改進(jìn),得到了滿意的效果。實(shí)現(xiàn)的代碼如下:

voidpictureinpicture()

{

………………………..

CBitmapbitmap,*oldmap;

pData1=(BYTE*)newchar[biWidth*biHeight*3];//biWidth和biHeight為視頻采集卡獲取//的圖像尺寸。

Read(pData1,bih.biWidth*bih.biHeight*3);//該函數(shù)從采集卡中獲取數(shù)據(jù)

CClientDCdc(this);

m_pBMI1=newBITMAPINFO;//自定義的BMP文件信息結(jié)構(gòu),用于后面的圖像顯示

m_pBMI1->bmiHeader.biBitCount=24;

m_pBMI1->bmiHeader.biClrImportant=0;

m_pBMI1->bmiHeader.biClrUsed=0;

m_pBMI1->bmiHeader.biCompression=0;

m_pBMI1->bmiHeader.biHeight=biHeight;

m_pBMI1->bmiHeader.biPlanes=1;

m_pBMI1->bmiHeader.biSize=40;

m_pBMI1->bmiHeader.biSizeImage=WIDTHBYTES(biWidth*8)*biHeight*3;

m_pBMI1->bmiHeader.biWidth=biWidth;

m_pBMI1->bmiHeader.biXPelsPerMeter=0;

m_pBMI1->bmiHeader.biYPelsPerMeter=0;

////////////////////////////////////////////////////////////////////////

pData2=(BYTE*)newchar[biWidth1*biHeight1*3];//申請(qǐng)存放小圖像的緩沖區(qū)

Read(pData2,biWidth1*biHeight1*3);////向該緩沖區(qū)讀數(shù)據(jù)

m_pBMI2=newBITMAPINFO;

m_pBMI2->bmiHeader.biBitCount=24;

m_pBMI2->bmiHeader.biClrImportant=0;

m_pBMI2->bmiHeader.biClrUsed=0;

m_pBMI2->bmiHeader.biCompression=0;

m_pBMI2->bmiHeader.biHeight=biHeight1;

m_pBMI2->bmiHeader.biPlanes=1;

m_pBMI2->bmiHeader.biSize=40;

m_pBMI2->bmiHeader.biSizeImage=WIDTHBYTES(biWidth1*8)*biHeight1*3;

m_pBMI2->bmiHeader.biWidth=biWidth1;

m_pBMI2->bmiHeader.biXPelsPerMeter=0;

m_pBMI2->bmiHeader.biYPelsPerMeter=0;

//下面實(shí)現(xiàn)畫(huà)中畫(huà)的顯示

CDCMemDc;

MemDc.CreateCompatibleDC(&dc);

bitmap.CreateCompatibleBitmap(&dc,biWidth,biHeight);

oldmap=MemDc.SelectObject(&bitmap);

::StretchDIBits(MemDc.m_hDC,0,0,biWidth,biHeight,0,0,—biWidth,biHeight,pData1,m_pBMI1,DIB_RGB_COLORS,SRCCOPY);//首先將大圖像畫(huà)在內(nèi)寸上下文中

::StretchDIBits(MemDc.m_hDC,20,20,biWidth1,biHeight1,_

0,0,biWidth1,biHeight1,pData2,m_pBMI2,DIB_RGB_COLORS,SRCCOPY);//再將小圖像畫(huà)在內(nèi)寸上下文中

::StretchBlt(dc.m_hDC,0,0,bih.biWidth,bih.biHeight,_

MemDc.m_hDC,0,0,bih.biWidth,bih.biHeight,SRCCOPY);//將結(jié)果顯示在屏幕上。

MemDc.SelectObject(oldmap);

deletepData1;

deletem_pBMI1;

篇(2)

關(guān)鍵詞:煙葉數(shù)字圖像;邊緣處理;形態(tài)學(xué)變換;特征抽??;智能識(shí)別

1引言

煙葉是煙草工業(yè)的基礎(chǔ)原料, 對(duì)煙草工業(yè)生產(chǎn)質(zhì)量和煙草行業(yè)經(jīng)營(yíng)效益具有舉足輕重的作用。對(duì)煙葉生產(chǎn)過(guò)程的各個(gè)環(huán)節(jié)包括煙葉品質(zhì)的智能識(shí)別進(jìn)行技術(shù)創(chuàng)新,提高品質(zhì)和效率,是一個(gè)前沿研究方向[1][5]。

當(dāng)前這一方面的研究,主要集中在數(shù)字圖像處理方面,把煙葉品質(zhì)的數(shù)字圖像處理與神經(jīng)網(wǎng)絡(luò)技術(shù)相結(jié)合,實(shí)現(xiàn)煙葉品質(zhì)的智能識(shí)別,是一個(gè)極有價(jià)值的工作。以下在此方面作出一個(gè)系統(tǒng)的、較為完備的、易于實(shí)際操作的研究。

2主要技術(shù)手段

2.1 MAⅡAB圖像處理工具箱

在MATLAB平臺(tái)上,借助圖像處理工具箱,可以簡(jiǎn)易明快地實(shí)現(xiàn)對(duì)煙葉數(shù)字圖像的圖像處理。在煙葉生產(chǎn)一線,用數(shù)碼照相機(jī)對(duì)各種煙葉樣本進(jìn)行拍照,輸入計(jì)算機(jī),用MAT_LAB將它轉(zhuǎn)換為各(.bmp;.jpeg;.gif;.png;.t 圖片以便進(jìn)行圖像處理。成本低,精確度高,宜于普及推廣。獲取各種類(lèi)型的煙葉數(shù)字圖像以后,經(jīng)閾值使用權(quán)圖像二值化,可以當(dāng)即辨識(shí)出這一圖像是否具有何種類(lèi)型的病蟲(chóng)害或品質(zhì)異變。利用煙葉數(shù)字圖像的邊緣檢測(cè)、輪廓提取等分析命令,獲得待測(cè)煙葉的圖像參數(shù)和特征,再由神經(jīng)網(wǎng)絡(luò)技術(shù),完成對(duì)煙葉品質(zhì)的智能識(shí)別。

2.2神經(jīng)網(wǎng)絡(luò)技術(shù)

神經(jīng)網(wǎng)絡(luò)是一個(gè)新的智能識(shí)別工具。畢業(yè)論文 經(jīng)過(guò)訓(xùn)練的神經(jīng)網(wǎng)絡(luò)能夠存儲(chǔ)與過(guò)程有關(guān)的信息,能直接從歷史數(shù)據(jù)中學(xué)習(xí),經(jīng)過(guò)用各種煙葉樣本訓(xùn)練和學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),能自動(dòng)地識(shí)別出待測(cè)煙葉樣本的品質(zhì)類(lèi)型。而且,神經(jīng)網(wǎng)絡(luò)具有濾除噪聲及在有噪聲情況下得出正確結(jié)論的能力。這一點(diǎn)對(duì)于煙葉生產(chǎn)實(shí)際中大量存在各種噪聲信息的情況而言,特別重要。它特別適合在線識(shí)別。

3應(yīng)用MATLAB圖像處理工具箱和神經(jīng)網(wǎng)絡(luò)技術(shù)對(duì)煙葉品質(zhì)智能識(shí)別的操作過(guò)程

3.1煙葉圖片樣本庫(kù)的建立

用數(shù)碼相機(jī)或其它數(shù)字圖像采集工具,采集各種類(lèi)型的煙葉的標(biāo)準(zhǔn)圖片,分類(lèi)歸檔,借助MATLAB圖像變換功能,將各種類(lèi)型的煙葉的標(biāo)準(zhǔn)圖片,轉(zhuǎn)換成各種圖片形式:.bmp;.jpeg;.sir;.png;.tif等,以便隨時(shí)調(diào)用。這些煙葉圖片,有不同品質(zhì)的樣本;還有各種病蟲(chóng)害標(biāo)本和變異標(biāo)本。

3.2用直方圖均衡來(lái)實(shí)現(xiàn)圖像增強(qiáng)

當(dāng)從生產(chǎn)一線采集的煙葉待測(cè)樣本的圖像對(duì)比度較低,碩士論文 即灰度直方圖分布區(qū)間較窄時(shí),可用直方圖均衡實(shí)現(xiàn)灰度分布區(qū)間展寬而達(dá)到圖像增強(qiáng)的效果。

3.3煙葉圖像的邊緣檢測(cè)和特征提取

煙葉圖像的基本特征之一是圖像邊緣。圖像邊緣是圖像周?chē)袼鼗叶扔须A躍性變化或屋頂變化的像素的集合。煙葉的邊緣是由灰度的不連續(xù)性所致,因此考察圖像每個(gè)像素在某個(gè)鄰域內(nèi)灰度的變化,利用邊緣鄰近一階或二階方向?qū)?shù)變化規(guī)律可以檢測(cè)煙葉圖像邊緣。圖像特征反映煙葉的幾何結(jié)構(gòu),如面積、周長(zhǎng)、分形分維數(shù)、孔洞數(shù)、歐拉數(shù)等等。圖像特征的選擇是圖像識(shí)別的重要環(huán)節(jié)。運(yùn)用二叉分類(lèi)法在找出判別特征后,對(duì)不同的圖像特征由分類(lèi)閾值按二分的方法進(jìn)行分類(lèi);運(yùn)用相似距離分類(lèi)方法把待判圖像與一個(gè)標(biāo)準(zhǔn)圖像相比,標(biāo)準(zhǔn)圖像用樣本圖像特征向量的均值來(lái)表示。通過(guò)計(jì)算待判圖像與標(biāo)準(zhǔn)圖像之問(wèn)的在相空間中的距離來(lái)判別圖像和進(jìn)行分類(lèi)。這一過(guò)程還為用神經(jīng)網(wǎng)絡(luò)技術(shù)實(shí)現(xiàn)對(duì)煙葉品質(zhì)進(jìn)行智能識(shí)別作出必要的準(zhǔn)備。

3.4數(shù)字圖像矩陣數(shù)據(jù)的顯示及其傅立葉

變換這一變換的目的是為提取特征、進(jìn)行神經(jīng)網(wǎng)絡(luò)模式識(shí)別等作出必要的準(zhǔn)備。

轉(zhuǎn)貼于 3.5直方圖均勻化

這是使煙葉圖像性質(zhì)更為優(yōu)良而采取的一個(gè)技術(shù)操作,源代碼如下:

I=imread ("yangshuo.tif');imshow (I);

figure,imhist(I);

[J,T]=histeq (I,64);

%圖像灰度擴(kuò)展到0-255,但是只有64個(gè)灰度級(jí)

figure,imshow (J);

figure,imhist(J);

figure,Dlot((0:255)/255,T);%轉(zhuǎn)移函數(shù)的變換曲線

J=histeq (I,32);

figure,imshow 0);

%圖像灰度擴(kuò)展到0~255,但是只有32個(gè)灰度級(jí)

figure,imhist(J);

3.6采用二維中值濾波函數(shù)對(duì)受椒鹽噪聲干擾的圖像濾波

MATLA圖像處理工具箱具有強(qiáng)大的功能,能夠?qū)υ肼暩蓴_的煙葉圖片進(jìn)行消噪處理,模擬源代碼如下:

I=imread ("eight.tif');

imshow (I);

J2=imnoise (I,"salt&pepper ,0.04);

%疊加密度為0.04 的椒鹽噪聲

figure,imshow 02);

I_Filterl=medfdt2 (J2,[3 ,3]);

%窗口大小為3x3

figure.imshow (I Fiher1);

I_Filter 2=medfdt2 (J2,[5, 5]);

%窗口大小為5x5

figure,imshow (I_Filter2);

I_Filter3=medf'dt2 (J2,[7, 7]);

%窗口大小為7x7

figure,imshow (I_Filter3);

3.7用神經(jīng)網(wǎng)絡(luò)技術(shù)對(duì)煙葉圖像進(jìn)行智能識(shí)別

神經(jīng)網(wǎng)絡(luò)作為一種自適應(yīng)的模式識(shí)別技術(shù),并不需要預(yù)選給定有關(guān)模式的經(jīng)驗(yàn)知識(shí)和判別函數(shù),它能通過(guò)自身的學(xué)習(xí)機(jī)制自動(dòng)形成所要求的決策區(qū)域。網(wǎng)絡(luò)的我由其拓樸結(jié)構(gòu)、神經(jīng)元特性、學(xué)習(xí)和訓(xùn)練規(guī)則所決定,它可以充分利用狀態(tài)信息,對(duì)不同狀態(tài)一一進(jìn)行訓(xùn)練而獲得某種映射關(guān)系,并且,網(wǎng)絡(luò)可以連續(xù)學(xué)習(xí),即使環(huán)境變異,這咱映射關(guān)系可以自適應(yīng)調(diào)整。在上面各節(jié)獲取煙葉圖像特征基礎(chǔ)之上,可以用神經(jīng)網(wǎng)絡(luò)技術(shù)進(jìn)行圖像模式識(shí)別。例如,基于概率神經(jīng)網(wǎng)絡(luò)PNN的煙葉品質(zhì)智能識(shí)別,它的主要優(yōu)點(diǎn)是:快速訓(xùn)練,訓(xùn)練時(shí)問(wèn)僅略大于讀取數(shù)據(jù)時(shí)間;無(wú)論分類(lèi)多么復(fù)雜,只要有足夠的訓(xùn)練數(shù)據(jù)(而這是煙葉生產(chǎn)一線可以做到的),就可以保證獲得貝斯葉準(zhǔn)則下的最優(yōu)解,允許增加或減少訓(xùn)練數(shù)據(jù)而無(wú)需重新進(jìn)行長(zhǎng)時(shí)間訓(xùn)練。這一神經(jīng)網(wǎng)絡(luò)對(duì)于煙葉品質(zhì)的圖像識(shí)別,具有重要意義。 4結(jié)論

基于計(jì)算機(jī)視覺(jué)和神經(jīng)網(wǎng)絡(luò)技術(shù)的煙葉品質(zhì)識(shí)別的數(shù)字圖像處理方法,醫(yī)學(xué)論文 是煙葉生產(chǎn)環(huán)節(jié)的一種技術(shù)創(chuàng)新,它可以在煙葉生產(chǎn)一線普及推廣,簡(jiǎn)便易行,能夠較大地提高煙葉品質(zhì)檢測(cè)的效率和質(zhì)量,以及自動(dòng)化程度和智能化水平。

參考文獻(xiàn)

[1]于潤(rùn)偉.基于圖像處理的稻米堊白自動(dòng)檢測(cè)研究[J].中國(guó)糧油學(xué)報(bào),2007,1:122—124.

篇(3)

Abstract: In order to improve the accuracity of the recognition research of Asphalt-aggregate ratio for asphalt mixture ,the MATLAB digital image processing were used to study the asphalt-aggregate ratio for asphalt mixture AC-13C and the researches mainly include 3 respects: the mixing proportion design and the image collection of asphalt mixture, the research of digital image processing technology, the asphalt-aggregate ratio recognition of asphalt mixture. The results show that there is a good linear functional correlation between the real asphalt-aggregate ratios and the recognition asphalt-aggregate ratios. The linear fitting function was created as Pay = 1.6872Pax-5.4606, and the correlation coefficient R2 is 0.9617.

關(guān)鍵詞:數(shù)字圖像處理;瀝青混合料;油石比;識(shí)別

Key words: digital image processing;asphalt mixture;asphalt-aggregate ratio;recognition

中圖分類(lèi)號(hào):TU535 文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1006-4311(2010)13-0093-02

0引言

隨著交通運(yùn)輸業(yè)的迅速發(fā)展,必須要提高瀝青混合料性能,開(kāi)發(fā)新型瀝青路面結(jié)構(gòu)材料。瀝青含量是瀝青混合料配合比設(shè)計(jì)和施工控制的重要指標(biāo),在很大程度上決定了瀝青路面的質(zhì)量品質(zhì),國(guó)內(nèi)外現(xiàn)行的瀝青混合料配合比檢測(cè)一般采用的是試驗(yàn)方法,進(jìn)行離心抽提或燃燒瀝青,檢測(cè)過(guò)程復(fù)雜,耗時(shí)長(zhǎng),不利于及時(shí)對(duì)路面狀況做出評(píng)價(jià),指導(dǎo)生產(chǎn)。近年來(lái),數(shù)字圖像處理技術(shù)被引入瀝青混合料研究領(lǐng)域,為有效解決傳統(tǒng)研究方法的缺陷提供了可能,國(guó)內(nèi)外也陸續(xù)進(jìn)行了采用圖像處理技術(shù)對(duì)瀝青混合料內(nèi)部形態(tài)的研究,國(guó)內(nèi)外現(xiàn)階段進(jìn)行的研究表明,數(shù)字圖像處理技術(shù)具有無(wú)破損、方便性、經(jīng)濟(jì)性,而且能快速全面反映形態(tài)特性以及空間分布的特點(diǎn)。為此,在本研究中,通過(guò)大量室內(nèi)對(duì)比試驗(yàn),主要研究不同油石比的瀝青混合料AC-13C的識(shí)別油石比,以建立識(shí)別油石比和實(shí)際油石比之間的線性關(guān)系,用于指導(dǎo)生產(chǎn)實(shí)踐。

1瀝青混合料配合比設(shè)計(jì)及圖像采集

本研究中采用的瀝青為埃索A級(jí)70號(hào)瀝青,選用瀝青路面的表面層AC-13C的級(jí)配,最終確定的瀝青混合料合成級(jí)配見(jiàn)表1。

在本研究中,瀝青混合料AC-13C分別采用五個(gè)不同油石比4.0%、4.5%、5.0%、5.5%和6.0%,用馬歇爾擊實(shí)儀成型馬歇爾試件,在成型后的試件中隨機(jī)抽取3個(gè)試件進(jìn)行水平兩分法的切割,并采用數(shù)碼相機(jī)進(jìn)行圖像的采集工作,在進(jìn)行油石比的識(shí)別中為了計(jì)算簡(jiǎn)便將圖像剪切為1400×1400像素。

2瀝青混合料數(shù)字圖像處理

由于照相機(jī)與目標(biāo)間的相對(duì)運(yùn)動(dòng)、大氣擾動(dòng)等原因使圖像質(zhì)量下降,造成了圖像退化的現(xiàn)象。所以在圖像處理之前要先進(jìn)行圖像復(fù)原,在MATLAB圖像處理系統(tǒng)中,選擇Lucy-Richardson復(fù)原方法,通過(guò)處理減少了圖像中產(chǎn)生的噪聲,忽略了某些退化后壞了的像素。對(duì)復(fù)原后的RGB彩色圖像進(jìn)行灰度變換,獲得瀝青混合料水平截面的灰度圖像。

3瀝青混合料油石比的識(shí)別

以油石比為5.5的瀝青混合料RGB圖像為例,對(duì)剪切后的圖像進(jìn)行復(fù)原、轉(zhuǎn)換灰度圖像處理,處理后的灰度圖像的直方圖見(jiàn)圖1。

根據(jù)圖1可以看到,由于瀝青混合料圖像中存在集料和瀝青兩大類(lèi),在圖像上形成了兩個(gè)峰,這兩者都近似服從正態(tài)分布,最左邊的波峰代表瀝青的灰度分布,我們可以根據(jù)瀝青混合料圖像的直方圖,動(dòng)態(tài)選取兩個(gè)波峰之間的谷底值,將最左邊的波峰單獨(dú)切取出來(lái),見(jiàn)圖2。對(duì)這個(gè)波峰進(jìn)行擬合,經(jīng)過(guò)多次嘗試,選擇采用兩個(gè)正態(tài)分布擬合這個(gè)波峰,相關(guān)系數(shù)達(dá)到0.998,其中一個(gè)正態(tài)分布峰頂對(duì)應(yīng)的灰度值與單獨(dú)切取出來(lái)的波峰峰頂對(duì)應(yīng)的灰度值非常接近,可以認(rèn)為兩者的灰度值是相同的,另外一個(gè)正態(tài)分布是對(duì)前者的修正,擬合效果見(jiàn)圖2。

通過(guò)MATLAB編程計(jì)算可以得到,瀝青灰度分布波峰峰頂對(duì)應(yīng)的灰度值為0.30,第一個(gè)小峰服從正態(tài)分布,參數(shù)為0.29997和0.047629,通過(guò)多次實(shí)驗(yàn)在峰值灰度值左側(cè)設(shè)定2.5,右側(cè)設(shè)定的范圍內(nèi)為瀝青的灰度分布范圍,計(jì)算得到瀝青的灰度分布范圍為46.14至88.65,提取瀝青灰度范圍內(nèi)的像素點(diǎn),圖像內(nèi)所有的像素點(diǎn)數(shù)目與瀝青的像素點(diǎn)數(shù)目之差為集料的像素點(diǎn)數(shù)目,得到油石比即瀝青像素點(diǎn)數(shù)目與集料像素點(diǎn)數(shù)目之比,計(jì)算得到這張實(shí)際油石比為5.5的圖像,識(shí)別油石比為6.43。同理,可以按照相同的方法求得其余瀝青混合料圖像的識(shí)別油石比,并計(jì)算均值,見(jiàn)表2,對(duì)得到的識(shí)別油石比用EXCEL進(jìn)行線性擬合,見(jiàn)圖3。

從表2中可以看出,識(shí)別油石比的變異系數(shù)在0.18以下,通過(guò)線性相關(guān)性分析可得到識(shí)別油石比Pax與實(shí)際油石比Pay的線性關(guān)系為:Pay=1.6872Pax-5.4606,式中,Pax為識(shí)別油石比,%;Pay為實(shí)際油石比,%。兩者相關(guān)系數(shù)R2為0.9617,表明采用圖像處理技術(shù)對(duì)瀝青混合料進(jìn)行油石比識(shí)別具有較高的識(shí)別精度,可以用于瀝青路面油石比的快速檢測(cè)。

4結(jié)論

通過(guò)選取表面層普通瀝青混合料AC-13C進(jìn)行馬歇爾試驗(yàn),對(duì)試件進(jìn)行水平截面圖像的分析,在瀝青混合料圖像灰度直方圖中,對(duì)瀝青分布波峰左側(cè)2.5倍σ和右側(cè)σ范圍內(nèi)提取瀝青像素?cái)?shù)目,并計(jì)算集料像素?cái)?shù)目和識(shí)別油石比,結(jié)果表明,動(dòng)態(tài)的選取瀝青灰度范圍識(shí)別油石比的方法能夠較好地反映實(shí)際油石比,得到的識(shí)別油石比與實(shí)際油石比較為接近,得到的變異系數(shù)在0.18以下,證明識(shí)別油石比的離散程度較小,數(shù)據(jù)可靠。并且實(shí)際油石比Pay和識(shí)別油石比Pax存在線性關(guān)系,通過(guò)線性擬合后,建立函數(shù)Pay =1.6872 Pax 5.4606,計(jì)算得到相關(guān)系數(shù)R2為0.9617,具有良好的相關(guān)性。因此,建議采用此線性函數(shù)對(duì)識(shí)別得到的油石比進(jìn)行修正。

參考文獻(xiàn):

[1] 楊浩.瀝青混合料的數(shù)字圖像特征研究[D]:[碩士學(xué)位論文].哈爾濱:哈爾濱工業(yè)大學(xué),2006.

[2] 肖彭.基于MATLAB7.0的瀝青混合料最佳油石比優(yōu)化設(shè)計(jì)[J].交通標(biāo)準(zhǔn)化,2005,17(11):73-75.

篇(4)

【關(guān)鍵詞】FPGA 圖像處理 實(shí)時(shí)高速 平滑算法

1 數(shù)字圖像處理及FPGA技術(shù)簡(jiǎn)介

1.1 數(shù)字圖像處理原理簡(jiǎn)介

圖像處理技術(shù)是本世紀(jì)信息科學(xué)方面成長(zhǎng)最迅速的方向之一,數(shù)字圖像處理的技術(shù)具有實(shí)際的研究?jī)r(jià)值。數(shù)字圖像處理技術(shù)是指利用圖像信號(hào)轉(zhuǎn)化為數(shù)字信號(hào)并進(jìn)行數(shù)字化處理這一手段把輸入圖像轉(zhuǎn)換成具有所希望特征的另一幅圖像的過(guò)程,通過(guò)轉(zhuǎn)化,使得圖像的信息數(shù)字化,可計(jì)算化,協(xié)調(diào)適應(yīng)現(xiàn)在的各種數(shù)字化系統(tǒng)。近年來(lái),隨著圖像傳感器趨于高集成度和低成本以及數(shù)字硬件的迅速發(fā)展,高質(zhì)量、高速度、高實(shí)時(shí)性的數(shù)字圖像處理技術(shù)越來(lái)越受到歡迎。專(zhuān)用集成電路ASIC和數(shù)字信號(hào)處理器DSP,在兩種方面突破研究,一是改變圖像處理算法,簡(jiǎn)化算法提高處理速度;二是改變實(shí)現(xiàn)算法的手段。DSP處理速度較之前的數(shù)字芯片有了大幅改進(jìn),但其體系仍是串行指令系統(tǒng),其固定算法仍不能滿足眾多算法的需要。

1.2 現(xiàn)場(chǎng)可編程門(mén)陣列(FPGA)器件技術(shù)

現(xiàn)在較為流行的一種半定制的數(shù)字芯片是現(xiàn)場(chǎng)可編程門(mén)陣列(FPGA)器件,它是一種高密度可編程邏輯器件,由大量邏輯宏單元構(gòu)成,通過(guò)各種程序參數(shù)的配置,能夠發(fā)揮這些邏輯單元的各自效果,組合出期望的整體效果和功能,這些配置數(shù)據(jù)存放在片內(nèi)的SRAM中或者是片外的EPROM或其他存儲(chǔ)體中,設(shè)計(jì)者可以現(xiàn)場(chǎng)修改器件的邏輯順序,而且靜態(tài)編程和動(dòng)態(tài)系統(tǒng)重置功能也得到了充分的發(fā)揮也應(yīng)用,基于組合邏輯下的功能讓硬件模塊可以像軟件代碼一樣方便修改調(diào)試。

2 基于FPGA的數(shù)字圖像處理算法研究

2.1 實(shí)時(shí)圖像處理算法

實(shí)時(shí)圖像處理系統(tǒng)和圖像處理的主要算法有4類(lèi):圖像數(shù)據(jù)的預(yù)處理,圖像智能識(shí)別,對(duì)象檢測(cè)和運(yùn)動(dòng)對(duì)象檢測(cè)。在實(shí)時(shí)圖像處理系統(tǒng)的后臺(tái)處理中,比分析環(huán)境簡(jiǎn)單、靜態(tài)圖像難度要更具有復(fù)雜性,如在數(shù)字圖像信號(hào)的傳送過(guò)程,中間過(guò)程傳感器和傳輸信道的噪聲的頻繁產(chǎn)生,這讓暫未得到處理的原始圖像信號(hào)變的更為難以分析,而且本身存在一定程度的噪聲。一般圖像信號(hào)的銳化技術(shù)處理也將引入噪聲,有時(shí)會(huì)加強(qiáng)原始圖像的噪聲。因此,有必要在圖像分析處理以前以及過(guò)程中對(duì)圖像的噪聲進(jìn)行濾除,并對(duì)圖像特征進(jìn)行加強(qiáng),消除噪聲和增強(qiáng)圖像這兩大關(guān)鍵步驟即為數(shù)字信號(hào)圖像的預(yù)處理過(guò)程。

2.2 圖像空域平滑算法

圖像平滑處理的的主要目的是為了降低噪音干擾,目前主流的兩種算法是的空間域平均算法以及中值濾波算法。對(duì)于含有噪聲的原始圖像的每個(gè)像素都采取了對(duì)應(yīng)的鄰域,將計(jì)算出的平均值作為平均空間域中圖像像素值進(jìn)行圖像處理??臻g域平均算法對(duì)于高斯噪聲消噪效果較好,但處理脈沖噪聲降噪效果很差。中值濾波的實(shí)質(zhì)是一種非線性處理方法,主要的原理應(yīng)用了順序統(tǒng)計(jì)思路,這種方法的原理是在第一步驟中賦予一個(gè)像素作為鄰域的中心,選擇方形鄰域后,第二步驟就是對(duì)范圍內(nèi)各像素灰度值進(jìn)行排序處理,排序之后獲得數(shù)列的中間值,此中間修正值被記為中心像素的灰度值,在實(shí)際應(yīng)用中個(gè),中值濾波算法消除脈沖噪聲具有更好的效果。

2.3 圖像空域銳化算法

圖像銳化的主要目的是使原圖像輪廓模糊或者顯示邊緣不明顯的變得清晰,突出細(xì)節(jié)。進(jìn)行銳化處理的前提基礎(chǔ)是:原始圖像必須具有有較高的信噪比,若沒(méi)有較高信噪比,經(jīng)過(guò)圖像銳化處理后,圖像信噪比會(huì)大大降低,這非常不利于圖像的清晰顯示處理。通常的做法是先去除或降低噪聲,使得圖像具有更高的信噪比后,再進(jìn)行后期的銳化處理。

圖像銳化處理目前主流有兩種方法:高通濾波法和微分法。微分法屬于圖像空域銳化,目前常用的兩種方法是梯度銳化和拉普拉斯銳化。

2.3.1 梯度銳化

梯度銳化原則:圖像變化速度值小的對(duì)應(yīng)于一個(gè)較小的梯度,整體會(huì)顯得比較暗。因此,梯度銳化的常規(guī)思路是利用門(mén)限方法來(lái)判定,從而進(jìn)行梯度銳化優(yōu)化,也就是先賦予一個(gè)預(yù)定的閾值,如果該節(jié)點(diǎn)的梯度小于閾值時(shí),原始灰度被保持恒定;若大于閾值時(shí),在這一點(diǎn)上的灰度校正值可以用微分法處理得到。

2.3.2 拉普拉斯運(yùn)算

拉普拉斯運(yùn)算是偏導(dǎo)數(shù)運(yùn)算的線性組合,拉普拉斯算子是一種各向同性的微分算子,其特性包括旋轉(zhuǎn)不變性。拉普拉斯運(yùn)算完全可以轉(zhuǎn)換成模板運(yùn)算,而且對(duì)圖像中的孤立點(diǎn)和短點(diǎn)反應(yīng)較為敏感,比如在較暗的圖像中出現(xiàn)的個(gè)別亮點(diǎn),這些亮點(diǎn)處灰度發(fā)生跳變,通過(guò)拉普拉斯運(yùn)算將會(huì)使這些亮點(diǎn)亮度增強(qiáng),這一效果常用于邊緣檢測(cè)。當(dāng)然,拉普拉斯運(yùn)算同梯度銳化一樣,在增強(qiáng)圖像的同時(shí)會(huì)增強(qiáng)噪聲,因此在銳化前可以先進(jìn)行圖像平滑處理。

3 總結(jié)

本文以基于FPGA的高速圖像處理算法為研究主體,對(duì)圖像處理中技術(shù)的流水線實(shí)現(xiàn)、圖像空域平滑算法、圖像空域銳化算法進(jìn)行對(duì)比分析。圖像平滑算法減少噪聲的效果要更加優(yōu)化,平滑算法的中值濾波算法在消除脈沖噪聲中效果更為突出??臻g域平均算法主要對(duì)高斯噪聲的消噪效果較好,對(duì)脈沖噪聲消噪效果一般。圖像空域銳化算法可以是原本邊緣模糊的圖像清晰化,前提需要有較高信噪比,所以一般是先進(jìn)行去除噪聲,提高信噪比之后進(jìn)行銳化處理,銳化算法中的梯度銳化、拉普拉斯運(yùn)算算法都在基于FPGA的數(shù)字圖像處理的系統(tǒng)算法中效果明顯。

參考文獻(xiàn)

[1]李冬.基于FPGA的數(shù)字圖像處理的研究[D].安徽理工大學(xué)碩士學(xué)位論文,2009.

[2]宇野麻由子.FPGA規(guī)??焖僭龃骩J].電子設(shè)計(jì)應(yīng)用,2008(10)

篇(5)

關(guān)鍵詞:多媒體課件;圖形;圖像;處理;加工

中圖分類(lèi)號(hào):TP75文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1009-3044(2009)35-10087-03

Multimedia Courseware Image Processing and Graphics Processing Technology

LIN Han

(Florida Vocational and Technical College, Sichuan Machinery and Electronic and Information Engineering, Dazhou 653000, China)

Abstract: In the multi-media courseware creation,preparation of multimedia material is a very important part.Multimedia material,including text,images,graphics,animation,sound,video and so on. In these types of material,the graphic image is a multi-media courseware application of the most basic,the most important and most of the material,its handling and processing are also the most complex,the following response to this problem were discussed.

Key words: CAI; graphics; image; treatment; processing

由于多媒體技術(shù)的不斷發(fā)展,對(duì)于多媒體課件的質(zhì)量要求是越來(lái)越高,多媒體輔助教學(xué)已經(jīng)廣泛應(yīng)用,這是利用計(jì)算機(jī)技術(shù)和網(wǎng)絡(luò)技術(shù)來(lái)組織教學(xué)的一種新型教學(xué)手段,它帶來(lái)了課堂教學(xué)的新革命。

多媒體課件需具備以下特點(diǎn): 1) 豐富的表現(xiàn)力;2) 良好的交互性;3) 極大的共享性。多媒體課件在教學(xué)中的使用,改善了教學(xué)媒體的表現(xiàn)力和交互性、促進(jìn)了課堂教學(xué)內(nèi)容、教學(xué)方法、教學(xué)過(guò)程的全面優(yōu)化,提高了教學(xué)效果。一個(gè)好的多媒體課件需要多媒體素材來(lái)點(diǎn)綴

1 圖形圖像的概念

1)圖形圖像格式

圖形圖像格式主要有:BMP格式、GIF格式、JPEG格式、JPEG2000格式、TIFF格式、PSD格式、PNG格式、SWF格式、SVG格式等。其它非主流圖形圖像格式:PCX格式、DXF格式、WMF格式、EMF格式、LIC(FLI/FLC)格式、EPS格式、TGA格式等。比較常用的有BMP格式、JPEG格式、GIF格式等等,所以我們?cè)谶M(jìn)行圖形圖像處理以前,首先要對(duì)圖形圖像的格式要有清晰的認(rèn)識(shí),只有在此基礎(chǔ)上才可以進(jìn)行進(jìn)一步的開(kāi)發(fā)處理。

2)圖形圖像素材的獲取

多媒體課件中的圖形圖像,按其用途分,一般有三種,一是背景圖,二是按鈕圖,三是與教學(xué)內(nèi)容相關(guān)圖。一般情況下,圖形圖像素材的獲取進(jìn)入昵圖網(wǎng)可以找到很多行業(yè)的圖片,找到需要的圖片后保存圖片,若網(wǎng)頁(yè)設(shè)置為不能保存,可以用復(fù)制粘貼的方法保存圖片。對(duì)于一些素材原創(chuàng),可以在相應(yīng)的圖形圖像處理軟件中進(jìn)行創(chuàng)作。主要獲取方法:利用掃描儀、數(shù)碼相機(jī)從外部采集圖形圖像數(shù)據(jù);經(jīng)過(guò)Photoshop等圖象處理軟件處理、利用抓圖工具來(lái)抓取屏幕上顯示的圖像等這些都是最常用的;還可以通過(guò)從網(wǎng)上下載、從電視節(jié)目中錄制、從課件中截取、從資源光盤(pán)或資源庫(kù)中獲取、從VCD片中獲取等幾種方法。

圖形素材也可以自己進(jìn)行繪制,課件工具中都有相應(yīng)的繪制工具,可直接用繪圖工具進(jìn)行繪制。

2 圖形圖像區(qū)別

1)存儲(chǔ)方式的區(qū)別:圖形存儲(chǔ)的是畫(huà)圖的函數(shù);圖像存儲(chǔ)的則是像素的位置信息和顏色信息以及灰度信息。

2)縮放的區(qū)別:圖形在進(jìn)行縮放時(shí)不會(huì)失真,可以適應(yīng)不同的分辨率;圖像放大時(shí)會(huì)失真,可以看到整個(gè)圖像是由很多像素組合而成的。

3)處理方式的區(qū)別:對(duì)圖形,可以旋轉(zhuǎn)、扭曲、拉伸等等;而對(duì)圖像,可以進(jìn)行對(duì)比度增強(qiáng)、邊緣檢測(cè)等等。

4)算法的區(qū)別:對(duì)圖形,我們可以用幾何算法來(lái)處理;對(duì)圖像,可以用濾波、統(tǒng)計(jì)的算法。

5)其他:圖形不是主觀存在的,是根據(jù)客觀事物而主觀形成的;圖像則是對(duì)客觀事物的真實(shí)描述。

3 圖像的處理

自從20世紀(jì)60年代出現(xiàn)了計(jì)算機(jī)圖像處理技術(shù),為圖像處理提供了一種精確、靈活、通用的工具,從而極大拓展了圖像處理的應(yīng)用領(lǐng)域。

1)圖像處理的發(fā)展

雖然圖像處理起源比圖形學(xué)早30多年,但是它的應(yīng)用卻比圖形學(xué)足足晚了10多年,原因就是數(shù)字圖像比圖形所含的信息量大很多,只有當(dāng)計(jì)算機(jī)發(fā)展到一定水平才能進(jìn)入大規(guī)模的實(shí)用階段。

1921年,第一個(gè)數(shù)字圖像傳輸系統(tǒng)――巴特蘭電纜圖片傳輸系統(tǒng)橫跨大西洋傳輸圖像成功;1929年,第一次實(shí)現(xiàn)15級(jí)灰度的圖像編碼并引進(jìn)了一套用編碼穿孔紙袋來(lái)調(diào)制光束進(jìn)而使底片感光的圖像輸出設(shè)備;1952年,哈夫曼發(fā)表關(guān)于最小冗余度編碼的論文《構(gòu)造最小冗余度編碼的一種方法》;1964年,在阿波羅載人登月計(jì)劃中首次采用計(jì)算機(jī)對(duì)月球圖片進(jìn)行處理;1980年代中期,開(kāi)始對(duì)圖像處理進(jìn)行大規(guī)模應(yīng)用研究;自從數(shù)字圖像處理這門(mén)學(xué)科誕生以來(lái),圖像處理作為一門(mén)基礎(chǔ)學(xué)科,得到重大的發(fā)展。

2)圖像處理的概述

圖像處理一般指數(shù)字圖像處理,用計(jì)算機(jī)對(duì)圖像進(jìn)行分析,以達(dá)到所需結(jié)果的技術(shù)。常見(jiàn)的處理有圖像數(shù)字化、圖像編碼、圖像增強(qiáng)、圖像復(fù)原、圖像分割和圖像分析等。

①圖像數(shù)字化

通過(guò)取樣和量化過(guò)程將一個(gè)以自然形式存在的圖像變換為適合計(jì)算機(jī)處理的數(shù)字形式。圖像在計(jì)算機(jī)內(nèi)部被表示為一個(gè)數(shù)字矩陣,矩陣中每一元素稱為像素。圖像數(shù)字化需要專(zhuān)門(mén)的設(shè)備,常見(jiàn)的有各種電子的和光學(xué)的掃描設(shè)備,還有機(jī)電掃描設(shè)備和手工操作的數(shù)字化儀。

②圖像編碼

對(duì)圖像信息編碼,以滿足傳輸和存儲(chǔ)的要求,編碼能壓縮圖像的信息量,但圖像質(zhì)量幾乎不變。編碼方法有對(duì)圖像逐點(diǎn)進(jìn)行加工的方法,也有對(duì)圖像施加某種變換或基于區(qū)域、特征進(jìn)行編碼的方法。

③圖像壓縮

由數(shù)字化得到的一幅圖像的數(shù)據(jù)量十分巨大,圖像壓縮對(duì)于圖像的存儲(chǔ)和傳輸都十分必要。有兩類(lèi)壓縮算法,即不失真的方法和近似的方法。前者用于靜態(tài)圖像,后者用于動(dòng)態(tài)圖像。

④圖像增強(qiáng)和復(fù)原

圖像增強(qiáng)的目標(biāo)是改進(jìn)圖片的質(zhì)量,使圖像清晰或?qū)⑵滢D(zhuǎn)換為更適合人或機(jī)器分析的形式,所用方法可分成頻率域法和空間域法,它們可用于去除或減弱噪聲。圖像復(fù)原常用二種方法,一是建立退化源的數(shù)學(xué)模型;二是建立原始圖像的模型。

篇(6)

關(guān)鍵詞:棒材 計(jì)數(shù) 圖像

棒材自動(dòng)計(jì)數(shù)分隔一直是未能徹底解決的問(wèn)題,目前我國(guó)棒材生產(chǎn)企業(yè)普遍采用人工計(jì)數(shù)方法。該方法勞動(dòng)強(qiáng)度大,工作效率低,系統(tǒng)生產(chǎn)能力有限,而且準(zhǔn)確性難以保證。針對(duì)這種情況,我們想通過(guò)采用現(xiàn)代化手段和技術(shù)創(chuàng)新,能否開(kāi)發(fā)出適合我國(guó)鋼鐵企業(yè)的棒材自動(dòng)計(jì)數(shù)系統(tǒng),以有效提高勞動(dòng)生產(chǎn)率,把工人從繁重的體力勞動(dòng)和惡劣環(huán)境中解放出來(lái),力求為企業(yè)提供高科技設(shè)備,現(xiàn)從以下方面論證自動(dòng)計(jì)數(shù)系統(tǒng)可行性。

針對(duì)軋鋼廠棒材生產(chǎn)工藝現(xiàn)狀,為了實(shí)現(xiàn)標(biāo)準(zhǔn)化打捆包裝要求,我們希望利用綜合圖像識(shí)別、機(jī)械系統(tǒng)、光電檢測(cè)和控制技術(shù),實(shí)現(xiàn)棒材生產(chǎn)線計(jì)數(shù)定支環(huán)節(jié)機(jī)械化和自動(dòng)化操作。

軋鋼廠中,生產(chǎn)線上的棒材在進(jìn)行打捆包裝之前需要計(jì)數(shù),每種規(guī)格的每捆數(shù)量是不同的,計(jì)數(shù)必須按不同規(guī)格的棒材要求在線完成。當(dāng)棒材從傳輸輥道上移送到計(jì)數(shù)鏈條臺(tái)架上時(shí),有重疊和交叉現(xiàn)象,尤其是對(duì)φ6mm~φ14mm小規(guī)模棒材更是如此,這就使棒材的分離工作難度增加,也給計(jì)數(shù)工作帶來(lái)了一定的誤差。所以需要特定的執(zhí)行機(jī)構(gòu)對(duì)棒材進(jìn)行處理。下面淺談一下棒材自動(dòng)計(jì)數(shù)系統(tǒng)的思路和原理。

棒材在線自動(dòng)計(jì)數(shù)分隔系統(tǒng)可由振動(dòng)裝置、阻擋振動(dòng)平鋪振動(dòng)裝置、光電計(jì)數(shù)、分離裝置、圖像處理和控制系統(tǒng)幾部分組成,如圖1所示。

圖像處理系統(tǒng)包括軟件和硬件部分,通過(guò)對(duì)棒材分散程度進(jìn)行辨別確定是否符合平鋪前要求。振動(dòng)裝置用來(lái)振動(dòng)直徑較小的多層棒材的情況。棒材阻擋振動(dòng)平鋪裝置是一個(gè)齒臂結(jié)構(gòu),其上有主齒臂和副齒臂,可以調(diào)整齒形的大小。光電計(jì)數(shù)利用光纖傳感器檢測(cè)棒材通過(guò),可編程控制器進(jìn)行計(jì)數(shù)累加??刂葡到y(tǒng)以目前在工業(yè)現(xiàn)場(chǎng)應(yīng)用。

圖1 棒材在線自動(dòng)計(jì)數(shù)分隔系統(tǒng)的組成

阻擋振動(dòng)平鋪裝置是本系統(tǒng)的一個(gè)最重要的組件,安裝在二段傳送鏈之間的軋道上。該裝置為一個(gè)齒臂機(jī)構(gòu)放在一個(gè)振動(dòng)平臺(tái)上,上有主齒臂和副齒臂,可以調(diào)節(jié)齒的大小,該裝置結(jié)構(gòu)簡(jiǎn)單,并且具有振動(dòng)功能,能夠適應(yīng)現(xiàn)場(chǎng)復(fù)雜狀況,不會(huì)出現(xiàn)堵死現(xiàn)象。此機(jī)構(gòu)在擋住棒材的同時(shí),又進(jìn)行圖像處理的計(jì)數(shù)。當(dāng)計(jì)數(shù)值超過(guò)設(shè)定值時(shí),齒臂機(jī)構(gòu)升起,對(duì)棒材進(jìn)行平鋪處理,只有實(shí)現(xiàn)了平鋪,后面的光電計(jì)數(shù)裝置才有意義。其結(jié)構(gòu)簡(jiǎn)圖如圖2所示。

設(shè)計(jì)齒臂時(shí),應(yīng)考慮以下因素:

(1)齒臂的數(shù)量不宜過(guò)多或過(guò)少。齒臂安置過(guò)多,會(huì)使整個(gè)系統(tǒng)龐大、笨重,并且增加制造成本造成浪費(fèi)。(2)將齒臂安裝在棒線材平鋪于傳送鏈條上時(shí)撓度最大的位置(即兩鏈條的中間處),以減少棒材可能出現(xiàn)交叉情況的點(diǎn),同時(shí),也便于安裝。(3)齒形設(shè)計(jì)。齒的深度應(yīng)保證棒線材落如齒槽后,高點(diǎn)與齒的上表面在同一水平面上,以減小下滑棒材與齒臂間的摩擦系數(shù),便于棒材滑落。齒槽間距過(guò)窄可能導(dǎo)致計(jì)數(shù)分離環(huán)節(jié)的分離手無(wú)法準(zhǔn)確開(kāi)要分離的棒材,因此,最小齒間距應(yīng)足夠?qū)挕?4)為了滿足不同直徑棒材批量生產(chǎn)的需要將齒槽寬設(shè)計(jì)成可調(diào)整,可以有效降低系統(tǒng)的生產(chǎn)、安裝成本,并避免由于拆換齒臂造成的生產(chǎn)效率降低。

分離裝置是系統(tǒng)重要的執(zhí)行機(jī)構(gòu),是實(shí)現(xiàn)棒材自動(dòng)分離的關(guān)鍵設(shè)備,也是機(jī)械系統(tǒng)設(shè)計(jì)的另一個(gè)重點(diǎn)和難點(diǎn)。

分離系統(tǒng)可以采用汽缸裝置組成。當(dāng)計(jì)數(shù)值達(dá)到定支數(shù)時(shí),可編程控制器發(fā)出信號(hào),鏈條停止運(yùn)動(dòng),分離系汽缸升起,以擋住后面的棒材,鏈條運(yùn)動(dòng),把棒材自動(dòng)分離開(kāi)來(lái),而前面的棒材由傳送鏈輸送到收集槽中,進(jìn)行捆扎打包。

圖像采集區(qū):齒臂正上方即為圖像采集區(qū)。當(dāng)傳送鏈將棒材運(yùn)送致齒臂上方時(shí),齒臂前端的擋板將阻礙棒線材繼續(xù)向前運(yùn)動(dòng),從而使棒材處于圖像采集區(qū),便于攝像頭準(zhǔn)確采集棒線材端面圖像。

振動(dòng)平鋪:當(dāng)圖像處理計(jì)數(shù)裝置記錄的棒材數(shù)目超過(guò)設(shè)定值時(shí),齒臂將緩慢傾斜至臨界角度,使齒臂上棒材分為兩部分。一部分將落入臂齒;另一部分將沿傾斜的臂齒滑下。

本論文在分析現(xiàn)有棒材計(jì)數(shù)方法的基礎(chǔ)上,對(duì)比國(guó)內(nèi)外目前同類(lèi)棒材自動(dòng)計(jì)數(shù)方法,提出了一種利用圖像處理和識(shí)別技術(shù)實(shí)現(xiàn)工業(yè)生產(chǎn)線上棒材自動(dòng)計(jì)數(shù)的新方法,對(duì)于小直徑棒材,圖像處理方法顯示出其優(yōu)越性;提出了一種棒材在線自動(dòng)計(jì)數(shù)分隔方法,包括機(jī)械系統(tǒng)、圖像處理、光電檢測(cè)以及控制系統(tǒng),為棒材計(jì)數(shù)開(kāi)辟了一條新途徑;結(jié)合工業(yè)現(xiàn)場(chǎng)環(huán)境,設(shè)計(jì)了一套機(jī)械系統(tǒng)包括振動(dòng)裝置、阻擋振動(dòng)平鋪裝置、分離裝置,能夠?qū)崿F(xiàn)棒材的平鋪和分離,并分析了振動(dòng)模型的運(yùn)動(dòng)仿真,為棒材在線自動(dòng)計(jì)數(shù)分隔系統(tǒng)的實(shí)現(xiàn)奠定了基礎(chǔ);通信的可靠實(shí)現(xiàn)是系統(tǒng)運(yùn)行的關(guān)鍵。本論文中,從軟、硬件兩方面給出了PLC與變頻器通信設(shè)計(jì)方案和具體實(shí)現(xiàn)。該種通信設(shè)計(jì)經(jīng)濟(jì)實(shí)用,實(shí)現(xiàn)方便。

棒材在線計(jì)數(shù)分隔是一個(gè)非常復(fù)雜的系統(tǒng),本文的計(jì)數(shù)方案是基于現(xiàn)有的圖像處理技術(shù),充分考慮了現(xiàn)場(chǎng)因素對(duì)系統(tǒng)的影響,具有很強(qiáng)的實(shí)用價(jià)值。

參考文獻(xiàn)

[1]章家?guī)r.棒材自動(dòng)計(jì)數(shù)系統(tǒng)的設(shè)計(jì)與應(yīng)用[J].全國(guó)第二屆特種電源與元器件學(xué)術(shù)年會(huì)論文集,2002.

[2]王培珍.圖像邊緣檢測(cè)融合方案初探[J].安徽工業(yè)大學(xué)學(xué)報(bào),2001.

篇(7)

關(guān)鍵詞:數(shù)字圖像 圖像處理 數(shù)字技術(shù) 應(yīng)用

一、數(shù)字圖像處理綜述

數(shù)字圖像處理(Digital Image Processing)又稱為計(jì)算機(jī)圖像處理,它是指將圖像信號(hào)轉(zhuǎn)換成數(shù)字信號(hào)并利用計(jì)算機(jī)對(duì)其進(jìn)行處理的過(guò)程。

數(shù)字圖像處理最早出現(xiàn)于20世紀(jì)50年代,當(dāng)時(shí)的電子計(jì)算機(jī)已經(jīng)發(fā)展到一定水平,人們開(kāi)始利用計(jì)算機(jī)來(lái)處理圖形和圖像信息,數(shù)字圖像處理作為一門(mén)學(xué)科大約形成于20世紀(jì)60年代初期,早期的圖像處理的目的是改善圖像的質(zhì)量,它以人為對(duì)象,以改善人的視覺(jué)效果為目的。圖像處理中,輸入的是質(zhì)量低的圖像,輸出的是改善質(zhì)量后的圖像,常用的圖像處理方法有圖像增強(qiáng)、復(fù)原、編碼、壓縮等。

首次獲得實(shí)際成功應(yīng)用的是美國(guó)噴氣推進(jìn)實(shí)驗(yàn)室(JPL),他們對(duì)航天探測(cè)器徘徊者7號(hào)在1964年發(fā)回的幾千張?jiān)虑蛘掌褂昧藞D像處理技術(shù),如幾何校正、灰度變換、去除噪聲等方法進(jìn)行處理,并考慮了太陽(yáng)位置和月球環(huán)境的影響,由計(jì)算機(jī)成功地繪制出月球表面地圖,獲得了巨大的成功。隨后又對(duì)探測(cè)飛船發(fā)回的近十萬(wàn)張照片進(jìn)行更為復(fù)雜的圖像處理,以致獲得了月球的地形圖、彩色圖及全景鑲嵌圖,獲得了非凡的成果,為人類(lèi)登月創(chuàng)舉奠定了堅(jiān)實(shí)的基礎(chǔ),也推動(dòng)了數(shù)字圖像處理這門(mén)學(xué)科的誕生。在以后的宇航空間技術(shù),醫(yī)學(xué)技術(shù)中數(shù)字圖像處理技術(shù)都發(fā)揮了巨大的作用。

從70年代中期開(kāi)始,隨著計(jì)算機(jī)技術(shù)和人工智能、思維科學(xué)研究的迅速發(fā)展,數(shù)字圖像處理向更高、更深層次發(fā)展,人們已開(kāi)始研究如何用計(jì)算機(jī)系統(tǒng)解釋圖像,實(shí)現(xiàn)類(lèi)似人類(lèi)視覺(jué)系統(tǒng)理解外部世界,這被稱為圖像理解或計(jì)算機(jī)視覺(jué)。很多國(guó)家,特別是發(fā)達(dá)國(guó)家投入更多的人力、物力到這項(xiàng)研究,取得了不少重要的研究成果。其中代表性的成果是70年代末MIT的Marr提出的視覺(jué)計(jì)算理論,這個(gè)理論成為計(jì)算機(jī)視覺(jué)領(lǐng)域其后十多年的主導(dǎo)思想。圖像理解雖然在理論方法研究上已取得不小的進(jìn)展,但它本身是一個(gè)比較難的研究領(lǐng)域,存在不少困難,因人類(lèi)本身對(duì)自己的視覺(jué)過(guò)程還了解甚少,因此計(jì)算機(jī)視覺(jué)是一個(gè)有待人們進(jìn)一步探索的新領(lǐng)域。

二、國(guó)內(nèi)外研究現(xiàn)狀

目前,國(guó)內(nèi)圖像識(shí)別的算法研究多是關(guān)于數(shù)字、文字、人臉、以及醫(yī)用病理方面的較多,對(duì)產(chǎn)品內(nèi)表圖像進(jìn)行分析識(shí)別、分類(lèi)的還很少。國(guó)內(nèi)已研制出了具有先進(jìn)水平的高精度內(nèi)表檢測(cè)系統(tǒng)和裝置,如何對(duì)產(chǎn)品零部件的外形,尺寸進(jìn)行較高精度測(cè)量的激光在線檢測(cè)系統(tǒng)等,但迄今為止,尚無(wú)能對(duì)生產(chǎn)出的產(chǎn)品內(nèi)表面進(jìn)行自動(dòng)檢測(cè)和識(shí)別的系統(tǒng)。應(yīng)用CCD、電子、計(jì)算機(jī)技術(shù)檢測(cè)內(nèi)表面的實(shí)時(shí)自動(dòng)檢測(cè)技術(shù)在國(guó)內(nèi)正處于剛剛起步的階段,對(duì)內(nèi)表面圖像進(jìn)行分析識(shí)別、分類(lèi)的軟件系統(tǒng)還沒(méi)有十分完善,現(xiàn)在的識(shí)別算法對(duì)圖像中的疵病部分定位不是很準(zhǔn)確,對(duì)疵病的范圍、大小、方位不能做定量分析,只能作定性分析,精度低,采用的傳統(tǒng)的最小距離等分類(lèi)器在圖像復(fù)雜且類(lèi)別多時(shí),很難表示和提取特征,進(jìn)行圖像識(shí)別十分困難。

國(guó)外關(guān)于圖像識(shí)別中的圖像分割,特征信號(hào)提取,邊緣檢測(cè),紋理識(shí)別等的算法已經(jīng)取得了一定的成果,提出了一些新方法,如利用直線分割來(lái)識(shí)別三維人臉,通過(guò)子圖匹配法在相鄰區(qū)域間識(shí)別不同目標(biāo),用雙值微波仿射不變函數(shù)識(shí)別二維形形狀等等,近年來(lái),國(guó)外基于圖像識(shí)別與分類(lèi)技術(shù)的圖像檢索,人臉識(shí)別,字體識(shí)別發(fā)展十分迅速。

在國(guó)外,為提高自動(dòng)目標(biāo)識(shí)別能力而開(kāi)發(fā)的算法現(xiàn)在正被引入許多偵測(cè)和成像系統(tǒng)之中,圖像分割、特征信號(hào)探測(cè)和析取、靜止目標(biāo)的模式識(shí)別等方面已取得了很大進(jìn)步,這一自動(dòng)目標(biāo)識(shí)別能力大大減輕了操作人員的工作負(fù)擔(dān)。如美國(guó)正在加緊自動(dòng)檢測(cè)能力與自動(dòng)目標(biāo)識(shí)別的研究工作,并在硬件能力的基礎(chǔ)上開(kāi)發(fā)多種用于信號(hào)圖像處理的算法和開(kāi)展各種算法軟件的研制,包括相關(guān)法(匹配濾波器技術(shù))、自適應(yīng)多維處理法、基于模型的方法等。

三、數(shù)字圖像處理的應(yīng)用

圖像是人類(lèi)獲取和交換信息的主要來(lái)源,因此,圖像處理的應(yīng)用領(lǐng)域必然涉及到人類(lèi)生活和工作的方方面面,隨著人類(lèi)活動(dòng)范圍的不斷擴(kuò)大,圖像處理的應(yīng)用領(lǐng)域也將隨之不斷擴(kuò)大。

1、航天和航空技術(shù)方面的應(yīng)用

數(shù)字圖像處理技術(shù)在航天和航空技術(shù)方面的應(yīng)用,除了JPL對(duì)月球、火星照片的處理之外,另一方面的應(yīng)用是在飛機(jī)遙感和衛(wèi)星遙感技術(shù)中?,F(xiàn)在世界各國(guó)都在利用陸地衛(wèi)星所獲取的圖像進(jìn)行資源調(diào)查,災(zāi)害檢測(cè),資源勘察,農(nóng)業(yè)規(guī)劃,城市規(guī)劃,我國(guó)也陸續(xù)開(kāi)展了以上諸方面的一些實(shí)際應(yīng)用,并獲得了良好的效果。在氣象預(yù)報(bào)和對(duì)太空其它星球研究方面,數(shù)字圖像處理技術(shù)也發(fā)揮了相當(dāng)大的作用。

2、生物醫(yī)學(xué)工程方面的應(yīng)用

數(shù)字圖像處理在生物醫(yī)學(xué)工程方面的應(yīng)用十分廣泛,而且很有成效。除了一般的CT技術(shù)之外,還有一類(lèi)是對(duì)醫(yī)用顯微圖像的處理分析,如紅細(xì)胞、白細(xì)胞分類(lèi),染色體分析,癌細(xì)胞識(shí)別等,此外,在X光肺部圖像增晰、超聲波圖像處理、心電圖分析、立體定向放射治療等醫(yī)學(xué)診斷方面都廣泛地應(yīng)用圖像處理技術(shù)。

3、通信工程方面的應(yīng)用

當(dāng)前通信的主要發(fā)展方向是聲音、文字、圖像和數(shù)據(jù)結(jié)合的多媒體通信。具體地講是將電話、電視和計(jì)算機(jī)以三網(wǎng)合一的方式在數(shù)字通信網(wǎng)上傳輸。其中以圖像通信最為復(fù)雜和困難,因圖像的數(shù)據(jù)量十分巨大,如傳送彩色電視信號(hào)的速率達(dá)100Mbit/s以上,要將這樣高速率的數(shù)據(jù)實(shí)時(shí)傳送出去,必須采用編碼技術(shù)來(lái)壓縮信息的比特量。在一定意義上講,編碼壓縮是這些技術(shù)成敗的關(guān)鍵。除了已應(yīng)用較廣泛的熵編碼、DPCM編碼、變換編碼外,目前國(guó)內(nèi)外正在大力開(kāi)發(fā)研究新的編碼方法,如分行編碼、自適應(yīng)網(wǎng)絡(luò)編碼、小波變換圖像壓縮編碼等。

4、工業(yè)和工程方面的應(yīng)用

在工業(yè)和工程領(lǐng)域中圖像處理技術(shù)有著廣泛的應(yīng)用,如自動(dòng)裝配線中檢測(cè)零件的質(zhì)量、并對(duì)零件進(jìn)行分類(lèi),印刷電路板疵病檢查,彈性力學(xué)照片的應(yīng)力分析,流體力學(xué)圖片的阻力和升力分析,郵政信件的自動(dòng)分揀,在一些有毒、放射性環(huán)境內(nèi)識(shí)別工件及物體的形狀和排列狀態(tài),先進(jìn)的設(shè)計(jì)和制造技術(shù)中采用工業(yè)視覺(jué)等等。其中值得一提的是研制具備視覺(jué)、聽(tīng)覺(jué)和觸覺(jué)功能的智能機(jī)器人,將會(huì)給工農(nóng)業(yè)生產(chǎn)帶來(lái)新的激勵(lì),目前已在工業(yè)生產(chǎn)中的噴漆、焊接、裝配中得到有效的利用。

5、軍事公安方面的應(yīng)用

在軍事方面圖像處理和識(shí)別主要用于導(dǎo)彈的精確末制導(dǎo),各種偵察照片的判讀,具有圖像傳輸、存儲(chǔ)和顯示的軍事自動(dòng)化指揮系統(tǒng),飛機(jī)、坦克和軍艦?zāi)M訓(xùn)練系統(tǒng)等;公安業(yè)務(wù)圖片的判讀分析,指紋識(shí)別,人臉鑒別,不完整圖片的復(fù)原,以及交通監(jiān)控、事故分析等。目前已投入運(yùn)行的高速公路不停車(chē)自動(dòng)收費(fèi)系統(tǒng)中的車(chē)輛和車(chē)牌的自動(dòng)識(shí)別都是圖像處理技術(shù)成功應(yīng)用的例子。

6、文化藝術(shù)方面的應(yīng)用

目前這類(lèi)應(yīng)用有電視畫(huà)面的數(shù)字編輯,動(dòng)畫(huà)的制作,電子圖像游戲,紡織工藝品設(shè)計(jì),服裝設(shè)計(jì)與制作,發(fā)型設(shè)計(jì),文物資料照片的復(fù)制和修復(fù),運(yùn)動(dòng)員動(dòng)作分析和評(píng)分等等,現(xiàn)在已逐漸形成一門(mén)新的藝術(shù)——計(jì)算機(jī)美術(shù)。

參考文獻(xiàn):

[1]孫即祥 圖像壓縮與投影重建 北京:科學(xué)出版社;2005.7:第一章:1~2,63~64.

[2]韓金姝.基于分形的植物形態(tài)模擬與圖像壓縮技術(shù)研究:[碩士論文]. 青島:中國(guó)海洋大學(xué)信號(hào)與信息處理專(zhuān)業(yè),2005.